On the zero divisor graphs of Galois rings

Maurice Owino Oduor
University of Kabianga,
Department of Mathematics and
Computer Science, PO. Box 2030 -
20200, Kericho, Kenya.

moduor@kabianga.ac.ke

Abstract

Let R be a Galois ring. The subset of zero divisors of R is studied
with specific emphasis on the graph theoretical properties. The zero
divisor graphs determined by equivalence classes of the zero divisors
of the ring are also explored.
On the zero divisor graphs of Galois rings

Maurice Owino Oduor

Abstract. Let R be a Galois ring. The subset of zero divisors of R is studied with specific emphasis on the graph theoretical properties. The zero divisor graphs determined by equivalence classes of the zero divisors of the ring are also explored.

Mathematics Subject Classification (2010). 05C25, 05C35.

Keywords. Galois rings, Zero divisor graphs.

1. Introduction

In this section, we summarize some well known results on the zero divisor graphs of commutative rings. The definition of terms and standard notations can be obtained from [1, 4, 8]. The concept of a zero divisor graph was proposed by Ivstan Beck in [3]. According to him, $G(R) = R$ such that the distinct vertices u and v are adjacent if $uv = 0$. Since the zero element is adjacent to every other vertex, the graph is connected with $\text{diam}(G(R)) \leq 2$. He conjectured that the chromatic number coincides with the clique number of $G(R)$. Later, D.D. Anderson and M. Naseer in [1] provided an example where the clique number is strictly less than the chromatic number. D.F. Anderson and P.S. Livingston [2] simplified Beck’s graph. They considered the non zero zero divisors as the vertices of the graph $\Gamma(R)$ and the adjacency concept is similar to Beck’s. Amongst their major findings, the graph of commutative ring R is connected with $\text{diam}(\Gamma(R)) \leq 3$. S.B. Mulay in [6] introduced the zero divisor graph $\Gamma_E(R)$ of equivalent vertices. The graph $\Gamma_E(R)$ is connected with $\text{diam}(\Gamma_E(R)) \leq 3$. This graph can be finite even if R is infinite, thus it is less "noisy" than its predecessors. S.P. Redmond in [7], originated a zero divisor graph with respect to an ideal I. The distinct vertices u and v are adjacent with $uv \in I$. In this paper, some graph theoretical properties of Galois rings have been determined.

2. Zero divisor graphs of Galois rings

A ring R is said to be Galois, if its subset of all the zero divisors (including zero) forms a principal ideal. It is an extension of the ring of integers modulo p^k (where p is a prime integer and k is a positive integer). The extension is usually represented by $\mathbb{Z}_{p^k}[x]/\langle f(x) \rangle$ where $f(x) \in \mathbb{Z}_{p^k}[x]$ is a monic polynomial of degree r and irreducible over \mathbb{Z}_p. It is denoted by $GR(p^k r, p^k)$. A Galois ring can be trivial depending on whether k or r equals to 1, otherwise it is nontrivial.

Let R_o be a Galois ring and $Z(R_o)$ be its subset of zero divisors (including zero). Then $Z(R_o)$
is a unique maximal ideal of \(R_o \) and is therefore the Jacobson radical of \(R_o \). A graph \(\Gamma(R_o) \) is associated to \(R_o \) with vertices \(Z(R_o)^* = Z(R_o) \setminus \{0\} \), the set of nonzero zero divisors of \(R_o \). The graph theoretical properties are used to illuminate the structure of \(Z(R_o) \). Two distinct vertices \(u_1, u_2 \in Z(R_o)^* \) are adjacent if \(u_1 u_2 = 0 \) and equivalent if \(\text{Ann}_{R_o}(u_1) = \text{Ann}_{R_o}(u_2) \). The graph of equivalent vertices in \(R_o \), \(\Gamma_E(R_o) \) is simple with vertex set \(Z(R_o)^*/\sim \) such that \([u_1], [u_2] \in Z(R_o)^*/\sim \), adjacent provided \(u_1 u_2 = 0 \).

Let \(u \in Z(R_o)^* \) and \(s \neq 1 \) be a unit in \(R_o \). In \(\Gamma(R_o) \), the vertices \(u \) and \(su \) are distinct and \([u] = [su] \) in \(\Gamma_E(R_o) \). So \(\Gamma_E(R_o) \) is less noisy than \(\Gamma(R_o) \), (see[5]). In this paper, we investigate the connectedness of \(\Gamma(R_o) \), \(\Gamma_E(R_o) \) and determine the diameter, girth and binding number of \(\Gamma(R_o) \) and \(\Gamma_E(R_o) \).

Theorem 2.1. (See e.g [2]) Let \(R \) be a commutative ring (not necessarily Galois). Then \(\Gamma(R) \) is finite iff \(R \) is finite or an integral domain.

Remark 2.2. From the above theorem, we notice that \(\Gamma(R_o) \) is finite because \(R_o \) is finite.

Remark 2.3. If \(R_o = GR(p^r, p) \), then \(Z(R_o)^* \) is empty. It will therefore be of interest to characterize the zero divisor graphs of \(R_o = GR(p^{kr}, p^k) \), where \(k > 1, r \geq 1 \).

Remark 2.4. If \(p \) is prime, then \(\Gamma(GR(p^2, p^3)) \) is a complete graph on \(p - 1 \) vertices and \(\Gamma_E(GR(p^2, p^3)) \) is a single vertex. But \(\Gamma(GR(p^3, p^2)) \) is messy while \(\Gamma_E(GR(p^3, p^2)) \) is a single edge. Moreover, \(\Gamma(GR(p^4, p^3)) \) is even messier while \(\Gamma_E(GR(p^4, p^3)) \) is a star graph.

Proposition 2.5. Let \(R_o = GR(p^k, p^k) \). Suppose \(\alpha \) is a unit in \(R_o \) and \(|\Gamma(R_o)| = p^l \alpha \), then the degree of \(p^l \alpha \),

\[
\text{deg}(p^l \alpha) = \begin{cases}
 p^l - 1 & \text{if } 2l < k \\
 p^l - 2 & \text{if } 2l \geq k
\end{cases}
\]

Proof. Given that \(\alpha \) is a unit in \(R_o \), then \((\alpha, p^k) = 1 \). So, all the vertices adjacent to \(p^l \alpha \) in the set \(pGR(p^k, p^k) \) of the graph \(\Gamma(R_o) \) are the same vertices adjacent to \(p^l \). Now, to find the degree of \(p^l \alpha \), it suffices to find all the vertices adjacent to \(p^l \). Let \(n \) be the number of vertices adjacent to \(p^l \) in \(\Gamma(R_o) \). The first term in this sequence of vertices is \(p^{k-l} \) and the \(n \)th term is \(p^{k-l} + (n - 1)p^{k-l} \). Since the last term in the sequence is \(p^k - p^{k-l} \), it easily follows that \(p^{k-l} + (n - 1)p^{k-l} = p^k - p^{k-l} \), leading to \(n = p^l - 1 \) if \(p^{k-l} > p^l \) or \(k > 2l \). If \(p^{k-l} \leq p^l \) or \(k \leq 2l \), then \(p^{2l-k}(p^{k-l}) = p^l \) is adjacent to itself, so that \(\text{deg}(p^l) = p^l - 2 \).

Proposition 2.6. Given that \(R_o = GR(p^{kr}, p^k) \) and \(\alpha \) is a unit in \(R_o \), then the degree of \(p^{kr} \alpha \),

\[
\text{deg}(p^{kr} \alpha) = \begin{cases}
 p^{kr} - 1 & \text{if } 2l < k \\
 p^{kr} - 2 & \text{if } 2l \geq k
\end{cases}
\]

Proposition 2.7. Let \(R_o = GR(p^k, p^k), k \geq 3 \). Then,

\[
\Gamma(R_o) = \begin{cases}
 (p^{k/2} - 1) - \text{partite if } k \text{ is even} \\
 p^{k/2 + 1} - \text{partite if } k \text{ is odd}
\end{cases}
\]

Proof. Obviously \(Z(R_o)^* = Z(R_o) \setminus \{0\} = pR_o - \{0\} \).

Case (i): \(k \) is an even integer. We partition \(Z(R_o)^* \) into the following subsets:

\[
V_1 = Z(R_o)^* - \{j(p^{k/2}), 2 \leq j \leq p^{k/2} - 1\}; \\
V_j = \{j(p^{k/2})\}, 2 \leq j \leq p^{k/2} - 1.
\]

Imhotep Proc.
For $1 \leq i \leq p^{\frac{k}{2}}-1$, $V_i \neq \emptyset$, V_i does not contain adjacent vertices, each V_j is singleton,
\[V_i \cap V_j = \emptyset, 2 \leq j \leq p^{\frac{k}{2}} - 1; \]
\[V_j \cap V_i = \emptyset, j \neq l, 2 \leq j, l \leq p^{\frac{k}{2}} - 1. \]
Finally
\[Z(R_o)^* = V_i \cup (\bigcup_{j=2}^{p^{\frac{k}{2}}-1} V_j) = \bigcup_{i=1}^{p^{\frac{k}{2}}-1} V_i. \]
Thus $\Gamma(R_o)$ is $p^{\frac{k}{2}} - 1$ partite.

Case (ii): k is an odd integer. We partition $Z(R_o)^*$ into the following subsets:
\[V_1 = Z(R_o)^* - \{(j-1)(p^{\frac{k+1}{2}}), 2 \leq j \leq p^{\frac{k+1}{2}} \}; \]
\[V_j = \{(j-1)(p^{\frac{k+1}{2}})\}, 2 \leq j \leq p^{\frac{k+1}{2}} \]

For $1 \leq i \leq p^{\frac{k-1}{2}}$, $V_i \neq \emptyset$, V_i does not contain adjacent vertices, each V_j is singleton,
\[V_i \cap V_j = \phi, 2 \leq j \leq p^{\frac{k-1}{2}}; \]
\[V_j \cap V_i = \emptyset, j \neq l, 2 \leq j, l \leq p^{\frac{k-1}{2}}. \]
Finally
\[Z(R_o)^* = V_i \cup (\bigcup_{j=2}^{p^{\frac{k-1}{2}}} V_j) = \bigcup_{i=1}^{p^{\frac{k-1}{2}}} V_i. \]
Thus $\Gamma(R_o)$ is $p^{\frac{k-1}{2}}$ partite.

Example 1.

Let $R_o = GR(8, 8)$. Then $Z(R_o)^* = \{2, 4, 6\}$. $V_1 = \{2, 6\}, V_2 = \{4\}$. So $\Gamma(R_o)$ is bipartite.

Example 2

Let $R_o = GR(81, 81)$. Then $Z(R_o)^* = \{3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 9\}$. $V_1 = \{3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 39, 42, 48, 51, 57, 60, 66, 69, 72, 75, 78\}$. $V_2 = \{18\}$, $V_3 = \{27\}$, $V_4 = \{36\}$, $V_5 = \{45\}$, $V_6 = \{54\}$, $V_7 = \{63\}$, $V_8 = \{72\}$. So $\Gamma(R_o)$ is octapartite.

Proposition 2.8. Suppose $R_o = GR(p^k, p^k), k \geq 4$. Then
i) The diameter, $\text{diam}(\Gamma(R_o)) = 2$
ii) The girth, $\text{gr}(\Gamma(R_o)) = 3$
iii) The binding number,
\[
\text{b}(\Gamma(R_o)) = \begin{cases}
\frac{p^{\frac{k}{2}} - 2}{p^{k-1} - p^{\frac{k}{2}} + 1} & \text{if } k \text{ is even} \\
\frac{p^{\frac{k}{2}} - 1}{p^{k-1} - p^{\frac{k}{2}}} & \text{if } k \text{ is odd}
\end{cases}
\]

Proof. (i) and (ii) are clear. To prove (iii), we consider the two cases separately.
If k is even, we consider
\[V_1 = Z(R_o)^* - \{j(p^{\frac{k}{2}}), 2 \leq j \leq p^{\frac{k}{2}} - 1\} \]
and
\[N(V_1) = \{j(p^{\frac{k}{2}}), 2 \leq j \leq p^{\frac{k}{2}} - 1\}. \]
Notice that
\[|V_1| = p^{k-1} - p^{\frac{k}{2}} + 1 \]
and
\[|N(V_1)| = p^{\frac{k}{2}} - 2 \]
so that
\[
b(\Gamma(R_o)) = \frac{|N(V_1)|}{|V_1|} = \frac{p^{k/2} - 2}{p^{k-1} - p^{\frac{k-1}{2}} + 1}.
\]

If \(k\) is odd, we consider
\[
V_1 = Z(R_o)^* - \{(j - 1)(p^{\frac{k-1}{2}}), 2 \leq j \leq p^{\frac{k-1}{2}}\}
\]
and
\[
N(V_1) = \{(j - 1)(p^{\frac{k+1}{2}}), 2 \leq j \leq p^{\frac{k+1}{2}}\}.
\]
Notice that
\[
|V_1| = p^{k-1} - p^{\frac{k-1}{2}}
\]
and
\[
|N(V_1)| = p^{\frac{k-1}{2}} - 1
\]
, so that
\[
b(\Gamma(R_o)) = \frac{|N(V_1)|}{|V_1|} = \frac{p^{\frac{k+1}{2}} - 1}{p^{k-1} - p^{\frac{k-1}{2}} + 1}.
\]

\[\blacksquare\]

Remark 2.9. Easy computations yield \(\lim_{k \to \infty} b(\Gamma(R_o)) = 0\). This implies that as \(k\) increases (whether odd or even), more vertices become non adjacent.

Lemma 2.10. Let \(R_o = GR(p^r, p)\), then \(Z(R_o)^* = \emptyset\)

Proof. Easy

\[\blacksquare\]

Proposition 2.11. Let \(R_o = GR(p^{2r}, p^2)\). Then \(\Gamma(R_o) = K_{p^r-1}\) and \(\Gamma_E(R_o)\) is a single vertex.

Proof. Since \(((Z(R_o))^2 = 0\), each zero divisor is adjacent to the other. But
\[
|Z(R_o)^*| = p^r - 1
\]
, so that \(\Gamma(R_o)\) is complete on \(p^r - 1\) vertices. That \(\Gamma_E(R_o)\) is a single vertex follows from the fact that \(\text{Ann}(Z(R_o)) = Z(R_o)\)

\[\blacksquare\]

Remark 2.12. Let \(R_o = GR(p^{3r}, p^3)\). Then \(\Gamma(R_o)\) is noisy while \(\Gamma_E(R_o)\) is a single edge.

Proposition 2.13. Given that \(R_o = GR(p^{kr}, p^k), k \geq 4\). Then the clique number,
\[
\omega(\Gamma_E(R_o)) = \begin{cases}
\frac{k}{2} & \text{if } k \text{ is even} \\
\frac{k+1}{2} & \text{if } k \text{ is odd}
\end{cases}
\]

Proof. It suffices to find a maximal complete subgraph of \(\Gamma_E(R_o)\). Let \(s\) be a unit in \(R_o\).

Case I: \(k\) is even.
We show that \(\Gamma_E(R_o)\) has a maximal complete subgraph \(S\) with vertices
\[
\{[p^i s] = [p^i], \frac{k}{2} \leq i \leq k - 1\}.
\]
Suppose on the contrary that \(S\) is not maximal in \(\Gamma_E(R_o)\) and that there exists a maximal
complete subgraph $S' \subset \Gamma_E(R_o)$ so that $S \subset S'$. Without loss of generality, assume that $p^i \in S'$ where
\[
\begin{cases}
0 < i < \frac{k}{2}, \text{ } k \text{ is even} \\
0 < i < \frac{k+1}{2}, \text{ } k \text{ is odd}
\end{cases}
\]
then there exists some $j > i > 0$ so that
\[
p^i.p^{k-1-j} = p^{k-1+i-j} \neq 0.
\]
So S' is not complete, a contradiction.

Case II: k is odd.
Using similar steps as Case I above, we can show that $\Gamma_E(R_o)$ contains a maximal complete subgraph with vertices
\[
\{[p^i] = [p^j], \frac{k-1}{2} \leq \ell \leq k-1\}.
\]

Proposition 2.14. Let $R_o = GR(p^{kr}, p^k), k \geq 4$. Then
\begin{enumerate}[(i)]
\item the diameter, $\text{diam}(\Gamma_E(R_o)) = 2$
\item the girth, $\text{gr}(\Gamma_E(R_o)) = 3$
\item the binding number, $\text{b}(\Gamma_E(R_o)) = \begin{cases} k-4 \text{ if } k \text{ is even} \\
\frac{k-5}{k-1} \text{ if } k \text{ is odd}
\end{cases}$
\end{enumerate}

Proof. (i) and (ii) are easy. To prove (iii), we consider the two cases separately. When k is even, then from Proposition 2 ,
\[
|V_1| = \frac{k}{2}
\]
while
\[
|N(V_1)| = \frac{k-4}{2},
\]
so that
\[
\text{b}(\Gamma(R_o)) = \frac{k-4}{k}.
\]
Next, when k is odd,
\[
|V_1| = \frac{k-1}{2}
\]
while
\[
|N(V_1)| = \frac{k-5}{2}.
\]
The result then easily follows.

Corollary 2.15. Suppose $R_o = GR(p^{kr}, p^k)$ where $k \geq 4$. Then
\[
\Gamma_E(R_o) = \begin{cases} \frac{k}{2} \text{ partite if } k \text{ is even} \\
\frac{k+1}{2} \text{ partite if } k \text{ is odd}
\end{cases}
\]
Proof. Case I: k is even.
$\Gamma_{E}(R_o)$ is partitioned into the following subsets.

\[V_1 = \{(Z(R_o))^i : 1 \leq i \leq \frac{k}{2}\} \]

\[V_i = \{(Z(R_o))^i\}, \quad \frac{k}{2} < i \leq k - 1. \]

For each i, $V_1 \cap V_i = \emptyset$ and the V_i are mutually disjoint. Moreover,

\[V_1 \cup \bigcup_{i=k/2}^{k-1} V_i = \Gamma_{E}(R_o) \]

The result then follows by counting the disjoint subsets of $\Gamma_{E}(R_o)$.

Case II: k is odd.

In this case, $\Gamma_{E}(R_o)$ is partitioned into the following subsets.

\[V_1 = \{(Z(R_o))^i : 1 \leq i \leq \frac{k-1}{2}\} \]

\[V_i = \{(Z(R_o))^i\}, \quad \frac{k-1}{2} < i \leq k - 1. \]

The rest of the proof involves steps similar to Case I with some slight modifications.

Proposition 2.16. Let $R_o = GR(p^{kr}, p^k)$, $k \geq 3$. Then

i) the diameter, $\text{diam}(\Gamma(R_o)) = 2$

ii) the girth, $\text{gr}(\Gamma(R_o)) = 3$

iii) the binding number,

\[b(\Gamma(R_o)) = \begin{cases}
\frac{p^{\left(\frac{k}{2}\right)r} - 2}{p^{(k-1)r} - p^{\left(\frac{k}{2}\right)r} + 1} & \text{if } k \text{ is even} \\
\frac{p^{\left(\frac{k-1}{2}\right)r} - 1}{p^{(k-1)r} - p^{\left(\frac{k-1}{2}\right)r}} & \text{if } k \text{ is odd}
\end{cases} \]

Proof. (i) and (ii) are elementary. To prove (iii), begin with the case when k is even. Let $\epsilon_1, \ldots, \epsilon_r \in R_o$ with $\epsilon_1 = 1$ such that

\[\tau_1, \ldots, \tau_r \in R_o/pR_o \]

form a basis for R_o/pR_o regarded as a vector space over its prime subfield F_p. By the definition of V_1 in the previous Proposition,

\[N(V_1) = V_{\sum a_i \epsilon_i}. \]

So

\[|N(V_1)| = p^{\left(\frac{k}{2}\right)r} - 2. \]

Also

\[|V_1| = |Z(R_o)^*| = |V_{\sum a_i \epsilon_i}| = p^{(k-1)r} - 1 - (p^{(k-1)r} - 2) = p^{(k-1)r} - p^{\frac{k}{2}r} + 1. \]

Let k be odd. Then

\[|N(V_1)| = |V_{\sum a_i \epsilon_i}| = p^{\frac{k-1}{2}r} - 1. \]
Also

\[|V_1| = |Z(R_o)^* - X| = |Z(R_o)^*| - |X| = p^{(k-1)r} - 1 - (p^{\left(\frac{k-1}{2}\right)r} - 1) = p^{(k-1)r} - p^{\left(\frac{k-1}{2}\right)r} \]

Proposition 2.17. Let \(R_o = GR(p^{kr}, p^k) \), where \(k \geq 3 \) and \(r \in \mathbb{Z}^+ \). Then

\[
\Gamma(R_o) = \begin{cases}
 p^{\left(\frac{k}{2}\right)r} - 1 \text{ partite if } k \text{ is even} \\
 p^{\left(\frac{k-1}{2}\right)r} \text{ partite if } k \text{ is odd}
\end{cases}
\]

Proof. Clearly

\[Z(R_o)^* = Z(R_o) \setminus \{0\} = pR_o \setminus \{0\}. \]

Let \(\epsilon_1, ..., \epsilon_r \in R_o \) with \(\epsilon_1 = 1 \) such that

\[\overline{\epsilon_1}, ..., \overline{\epsilon_r} \in R_o/pR_o \]

form a basis for \(R_o/pR_o \) regarded as a vector space over its prime subfield \(F_p \). We consider the two cases separately.

Case I: \(k \) is an even integer.

We partition \(Z(R_o)^* \) into the following subsets.

\[X = \{ a_i \epsilon_i, 1 \leq i \leq r, a_i \in \{0, j(p^{\frac{k}{2}})\}, 1 \leq j \leq p^{\frac{k}{2}} - 1 \} \]

\[V_{\sum a_i \epsilon_i} = X \setminus \{0, p^{\frac{k}{2}}\} \]

\[V_1 = Z(R_o)^* \setminus V_{\sum a_i \epsilon_i} \]

For each \(i = 1, ..., r \), \(V_{\sum a_i \epsilon_i} \neq \emptyset \). Each of the \(V_{\sum a_i \epsilon_i} \neq \emptyset \) contains no adjacent vertices, \(V_1 \cap V_{\sum a_i \epsilon_i} = \emptyset \). The sets \(V_{\sum a_i \epsilon_i} \) are mutually disjoint. Moreover \(Z(R_o)^* = V_1 \cup (\cup_r V_{\sum a_i \epsilon_i}) \). Thus \(\Gamma(R_o) \) is \(p^{\left(\frac{k}{2}\right)r} \) partite.

Case II: \(k \) is an odd integer.

We partition \(Z(R_o)^* \) into the following subsets.

\[X = \{ a_i \epsilon_i, 1 \leq i \leq r, a_i \in \{0, (j-1)(p^{\frac{k}{2}})\}, 1 \leq j \leq p^{\frac{k-1}{2}} \} \]

\[V_{\sum a_i \epsilon_i} = X \setminus \{0\} \]

\[V_1 = Z(R_o)^* \setminus X. \]

The rest of the proof is similar to the previous case with slight modifications.

\[\blacksquare \]
3. Automorphisms of zero divisor graphs of Galois rings

Consider the integer \(k \geq 2 \) and a positive integer \(r \). Distinct ring automorphisms of \(GR(p^{kr}, p^k) \) induce distinct graph automorphisms of \(\Gamma(GR(p^{kr}, p^k)) \), because \(GR(p^{kr}, p^k) \) is a finite ring which is not a field, (see [2]). A graph automorphism, \(f \) of a graph \(\Gamma(R_o) \) is a bijection \(f : \Gamma \rightarrow \Gamma \) which preserves adjacency. The set \(\text{Aut}(\Gamma) \) of all graph automorphisms of \(\Gamma \) forms a group under the usual composition of functions, (see [2]). If \(\Gamma \) induce distinct graph automorphisms of \(\Gamma(R_o) \), then \(f = 1_{R_o} \). Let \(\text{Aut}(\Gamma) \) be the Galois ring of the form \(\mathbb{Z}/Z \). Let \(\text{Aut}(\Gamma) \) be the Galois ring of the form \(\mathbb{Z}/Z \). For each \((i) \) of a graph \(\Gamma(R_o) \) to \(Z(R_o)^* \) we obtain a natural group homomorphism \(\phi : \text{Aut}(R_o) \rightarrow \text{Aut}(\Gamma(R_o)) \).

Theorem 3.1. (See [2]) Let \(R_o = GR(p^{kr}, p^k) \) and let \(f \in \text{Aut}(R_o) \). If \(f(x) = x, \forall x \in Z(R_o) \), then \(f = 1_{R_o} \). Thus, \(\phi : \text{Aut}(R_o) \rightarrow \text{Aut}(\Gamma(R_o)) \) is a monomorphism.

Now, consider \(R_o = GR(p^k, p^k) \). For \(p^k \geq 4, k \neq 1 \), let

\[
X = \{ j \in \mathbb{Z} | 1 < j < p^k, j \mid p^k \}.
\]

For each, \(j \in X \), let

\[V_j = \{ l \in \mathbb{Z} | 1 < l < p^k, (l, p^k) = j \}. \]

Note that

\[Z(GR(p^k, p^k))^* \]

is the disjoint union of \(V_j \)s. Notice that two vertices have the same degrees iff they are in the same \(V_d \) (See [2]).

Proposition 3.2. Consider the integer \(k \geq 2 \). Then

\[
| \text{Aut}(\Gamma(p^{kr}, p^k)) | = \begin{cases}
\prod_{i=1}^{k}(2^{(k-l)r})! & \text{if } p = 2 \\
\prod_{i=2}^{k}(p^{(k-l)r}(p^r - 1))! & \text{if } p \neq 2
\end{cases}
\]

Proof. Case I: \(r = 1 \).

Let \(p = 2 \). Set \(X = \{ 2, 4, ..., 2^{k-1} \} \). Then \(V_2 = \{ 2t | t \text{ is odd} \}, V_4 = \{ 4t | t \text{ is odd} \}, ..., V_{2^{k-1}} = \{ 2^{k-1}t | t \text{ is odd} \} \). Upon counting, | \(V_2 | = 2^{k-2}, | V_4 | = 2^{k-3} \) and continuing in a similar manner, | \(V_{2^{k-2}} | = 2 \), and | \(V_{2^{k-1}} | = 1 \). So \(\text{Aut}(\Gamma(GR(2^k, 2^k))) \cong \prod_{i=2}^{k} S_{2^{k-1}} \) and the result easily follows.

Let \(p \neq 2 \). Set \(X = \{ p, p^2, ..., p^{k-1} \} \). Then \(V_p = \{ pt | (t, p) = 1 \}, V_{p^2} = \{ p^2t | (t, p^2) = 1 \}, ..., V_{p^{k-1}} = \{ p^{k-1}t | (t, p^{k-1}) = 1 \} \). Upon counting, \(| V_p | = p^{k-2}(p - 1), | V_{p^2} | = p^{k-3}(p - 1) \) and continuing in a similar manner, \(| V_{p^{k-1}} | = p - 1 \). So \(\text{Aut}(\Gamma(GR(p^k, p^k))) \cong \prod_{i=2}^{k} S_{p^{k-1}(p-1)} \) and the result follows immediately.

Case II: \(r > 1 \).

Let \(\epsilon_1, ..., \epsilon_r \in R_o \) with \(\epsilon_1 = 1 \) such that \(\epsilon_1, ..., \epsilon_r \in R_o/Z(R_o) \) form a basis for \(R_o/Z(R_o) \) regarded as a vector space over its prime subfield \(GF(p) \). For \(p = 2 \), let \(X = \{ 2, 4, ..., 2^{k-1} \} \) and \(V_{\sum_{i=1}^{r} a_i} \) where \(a_i \in X \) be the disjoint vertices, then clearly \(\text{Aut}(\Gamma(GR(2^{kr}, 2^k))) \cong \prod_{i=2}^{k} S_{2^{k-1}r} \).

The steps are similar for the case when \(p \) is odd.

4. A class of finite rings

Let \(R_o \) be the Galois ring of the form \(GR(p^{kr}, p^k) \). For each \(i = 1, ..., h \), let \(u_i \in Z(R_o) \) such that \(U \) is an \(h \) dimensional \(R_o \) module generated by \(u_1, ..., u_h \) so that \(R = R_o \oplus U \) is an additive group. On this group, define multiplication by the following relations:

- (i) If \(k = 1, 2 \) then \(pu_{ij} = u_ju_i = 0, u_ir_o = r_o u_i \).

Imhotep Proc.
If \(k > 3 \) then
\[
p^{-1}u_i = 0, \quad u_i u_j = p^{2\gamma_{ij}}, \quad u_i^k u_j = u_i u_j^k = 0, \quad u_i r_o = r_o u_i.
\]
where \(r_o, \gamma_{ij} \in R_o, 1 \leq i, j \leq h \). \(p \) is a prime integer, \(n \) and \(r \) are positive integers.

Moreover if \(u_i | u \), then the additive order of \(u_i \) is \(p \).

It can be shown that the multiplication turns the additive group into a commutative ring with identity. The structure of the Von Neumann regular elements of the ring is well known. We present some results on the structure its zero divisors.

Proposition 4.1. Let \(R \) be a ring constructed in this section. If \(Z(R) = pR_o \oplus U \); \(\text{ann}(Z(R_o)) = p^{n-1}R_o \oplus U \); \(J^{n-1} = p^{n-1}R_o \).

If

i) \(x \in \text{ann}(J) \) then \(\deg(x) = |J| - 2 \)

ii) \(y \in Z(R) \) but \(y \in R - \text{ann}(Z(R)) \), then \(\deg(y) = |\text{ann}(Z(R))| - 1 \)

Proposition 4.2. Let \(R \) be a ring constructed in this section. Then

i) \(\Gamma(R) = \begin{cases}
p^{\left(\frac{k}{2}+h\right)r} - 1 \text{ partite if } k \text{ is even} \\
p^{\left(\frac{k-1}{2}+h\right)r} \text{ partite if } k \text{ is odd}
\end{cases} \)

ii) \(\text{diam}(\Gamma(R)) = 2 \)

iii) \(\text{gr}(\Gamma(R)) = 3 \)

iv) \(b(\Gamma(R)) = \begin{cases}
p^{\left(\frac{k}{2}+h\right)r}-2 \text{ if } k \text{ is even} \\
p^{\left(\frac{k-1}{2}+h\right)r}-1 \text{ if } k \text{ is odd}
\end{cases} \)

5. Conclusion

This study reveals, that it is possible to generalize the graph theoretical properties of Galois rings. The zero divisor graphs of Galois rings are symmetrical as confirmed from their automorphisms. It would be interesting to investigate, whether these properties extend to the zero divisor graphs of the idealizations of the Galois rings.

References

Maurice Owino Oduor

E-mail: moduor@kabianga.ac.ke

University of Kabianga, Department of Mathematics and Computer Science, PO. Box 2030 - 20200, Kericho, Kenya.